
Glissen Brown, JR & Singh, P. Celiac disease. Int. Pediatrician child health 3923–31. https://doi.org/10.1080/20469047.2018.1504431 (2019).
Google Scholar
Aljebreen, AM, Almadi, MA, Alhammad, A. & Al Faleh, FZ Seroprevalence of celiac disease among healthy adolescents in Saudi Arabia. World J. Gastroenterol. 192374–2378. https://doi.org/10.3748/wjg.v19.i15.2374 (2013).
Google Scholar
Abu-Zeid, YA, Jasem, WS, Lebwohl, B., Green, PH, and ElGhazali, G. Seroprevalence of celiac disease among healthy adult nationals of the United Arab Emirates: a gender disparity. World J. Gastroenterol. 2015830–15836. https://doi.org/10.3748/wjg.v20.i42.15830 (2014).
Google Scholar
Harris, B. et al. The prevalence, immune profile and clinical characteristics of children with celiac disease and type 1 diabetes mellitus in the State of Qatar. J. Pediatr. Endocrinol. Metab. 341457–1461. https://doi.org/10.1515/jpem-2021-0452 (2021).
Google Scholar
Schulzke, JD, Bentzel, CJ, Schulzke, I., Riecken, EO, and Fromm, M. Epithelial tight junction structure in the jejunum of children with acute and treated celiac sprue. Pediatrician Res. 43435–441. https://doi.org/10.1203/00006450-199804000-00001 (1998).
Google Scholar
Schumann, M. et al. Mechanisms of epithelial translocation of alpha(2)-gliadin-33mer in celiac sprue. Intestine 57747–754. https://doi.org/10.1136/gut.2007.136366 (2008).
Google Scholar
Raki, M. et al. A unique subset of dendritic cells accumulate in the celiac lesion and effectively activate gluten-reactive T cells. Gastroenterology 131428–438. https://doi.org/10.1053/j.gastro.2006.06.002 (2006).
Google Scholar
DiSabatino, A. et al. Evidence for the role of interferon-alfa production by dendritic cells in the Th1 response in celiac disease. Gastroenterology 1331175–1187. https://doi.org/10.1053/j.gastro.2007.08.018 (2007).
Google Scholar
Kim, SY, Jeong, EJ & Steinert, PM IFN-gamma induces expression of transglutaminase 2 in rat small intestinal cells. J. Interferon Cytokine Res. 22677–682. https://doi.org/10.1089/10799900260100169 (2002).
Google Scholar
Akimov, SS & Belkin, AM Tissue cell surface transglutaminase is involved in monocyte cell adhesion and migration on fibronectin. Blood 981567-1576. https://doi.org/10.1182/blood.v98.5.1567 (2001).
Google Scholar
Ferdousi, M. et al. Early corneal nerve fiber damage and increased Langerhans cell density in children with type 1 diabetes mellitus. Science. representing 98758. https://doi.org/10.1038/s41598-019-45116-z (2019).
Google Scholar
Khan, A. et al. Corneal immune cells are increased in patients with multiple sclerosis. Transl. Screw. Science. Technology. ten19. https://doi.org/10.1167/tvst.10.4.19 (2021).
Google Scholar
Zhivov, A., Stave, J., Vollmar, B., and Guthoff, R. In vivo confocal microscopic assessment of Langerhans cell density and distribution in normal human corneal epithelium. Arch Graefes. Clin. Exp. Ophthalmol. 2431056-1061. https://doi.org/10.1007/s00417-004-1075-8 (2005).
Google Scholar
Rosenberg, ME, Tervo, TM, Muller, LJ, Moilanen, JA & Vesaluoma, MH In vivo confocal microscopy after herpetic keratitis. Cornea 21265–269. https://doi.org/10.1097/00003226-200204000-00006 (2002).
Google Scholar
Mastropasqua, L. et al. Distribution of epithelial dendritic cells in normal and inflamed human cornea: an in vivo confocal microscopy study. A m. J. Ophthalmol. 142736–744. https://doi.org/10.1016/j.ajo.2006.06.057 (2006).
Google Scholar
D’Onofrio, L. et al. Small nerve fiber and Langerhans cell damage in type 1 and type 2 diabetes and LADA measured by corneal confocal microscopy. Invest. Ophthalmol. Screw. Science. 625. https://doi.org/10.1167/iovs.62.6.5 (2021).
Google Scholar
Bitirgen, G. et al. Corneal confocal microscopy identifies loss of corneal nerve fibers and increased dendritic cells in patients with long COVID. Br. J. Ophthalmol. https://doi.org/10.1136/bjophthalmol-2021-319450 (2021).
Google Scholar
Machete, F. et al. In vivo confocal microscopic evaluation of corneal Langerhans cells in patients with dry eye disease. Open ophthalmol. J 851–59. https://doi.org/10.2174/1874364101408010051 (2014).
Google Scholar
Resch, MD et al. Dry eye and corneal Langerhans cells in systemic lupus erythematosus. J. Ophthalmol. 2015543835. https://doi.org/10.1155/2015/543835 (2015).
Google Scholar
Klitsch, A. et al. Reduced association between dendritic cells and corneal subbasal nerve fibers in patients with fibromyalgia syndrome. J. Peripheral. Nervous. System 259–18. https://doi.org/10.1111/jns.12360 (2020).
Google Scholar
Wu, QC et al. Observation of corneal Langerhans cells by confocal microscopy in vivo in thyroid ophthalmopathies. Running. Eye. Res. 41927–932. https://doi.org/10.3109/02713683.2015.1133833 (2016).
Google Scholar
Stettner, M. et al. Corneal confocal microscopy in chronic inflammatory demyelinating polyneuropathy. Anna. Clin. Transl. Neurol. 388–100. https://doi.org/10.1002/acn3.275 (2016).
Google Scholar
Pitarokoili, K. et al. Neuroimaging markers of clinical progression in chronic inflammatory demyelinating polyradiculoneuritis. The. Adv. Neurol. Disorder. 121756286419855485. https://doi.org/10.1177/1756286419855485 (2019).
Google Scholar
Motte, J. et al. Corneal inflammatory cell infiltration predicts disease activity in chronic inflammatory demyelinating polyneuropathy. Science. representing 1115150. https://doi.org/10.1038/s41598-021-94605-7 (2021).
Google Scholar
Athanasopoulos, D. et al. Longitudinal study on nerve ultrasound and corneal confocal microscopy in NF155 paranodopathy. Ann. Clin. Transl. Neurol. seven1061-1068. https://doi.org/10.1002/acn3.51061 (2020).
Google Scholar
Bizzaro, N. et al. Prevalence and clinical significance of tissue transglutaminase IgA and IgG antibodies in connective tissue disease, inflammatory bowel disease, and primary biliary cirrhosis. To dig. Say. Science. 482360–2365. https://doi.org/10.1023/b:ddas.0000007875.72256.e8 (2003).
Google Scholar
Picarelli, A. et al. Anti-tissue transglutaminase antibodies in arthritis patients: a disease-specific finding?. Clin. Chem. 492091–2094. https://doi.org/10.1373/clinchem.2003.023234 (2003).
Google Scholar
Vechi, M. et al. High level of positive tissue transglutaminase antibodies in chronic liver disease. Role of hepatic decompensation and antigenic source. Scan. J. Gastroenterol. 3850–54 (2003).
Google Scholar
Mirza, A. et al. A role of tissue transglutaminase in liver injury and fibrogenesis, and its regulation by NF-kappaB. A m. J. Physiol. 272G281-288. https://doi.org/10.1152/ajpgi.1997.272.2.G281 (1997).
Google Scholar
Seth, A., Kumar, P. & Jain, A. Prevalence and management of vitamin D deficiency in children with newly diagnosed celiac disease: a cohort study. Int. Pediatrician child health 41247–252. https://doi.org/10.1080/20469047.2021.1996089 (2021).
Google Scholar
Andren Aronsson, C. et al. Early childhood 25(OH)D levels are associated with celiac disease autoimmunity in at-risk children: a case-control study. Front. Nutr. 8720041. https://doi.org/10.3389/fnut.2021.720041 (2021).
Google Scholar
Sulimani, RA Celiac disease and severe vitamin D deficiency: the case of anti-tissue transglutaminase antibody screening. Camber. Osteoporosis. 1430. https://doi.org/10.1007/s11657-018-0554-1 (2019).
Google Scholar
Arnold, EP et al. Urodynamics of female incontinence: Factors influencing surgical outcomes. A m. J. Obstet. Gynecol. 117805–813. https://doi.org/10.1016/0002-9378(73)90496-1 (1973).
Google Scholar
Shetty, R. et al. Corneal dendritic cell density is associated with subbasal nerve plexus characteristics, ocular surface disease index, and serum vitamin D in evaporative dry eye. Biomedical. Res. Int. 20164369750. https://doi.org/10.1155/2016/4369750 (2016).
Google Scholar
Lagali, N.S. et al. The maturation of dendritic cells in the corneal epithelium with the onset of type 2 diabetes is associated with member 9 of the tumor necrosis factor receptor superfamily. Science. representing 814248. https://doi.org/10.1038/s41598-018-32410-5 (2018).
Google Scholar